Paracompactness of locally compact Hausdorff spaces.
نویسندگان
چکیده
منابع مشابه
On the Hereditary Paracompactness of Locally Compact, Hereditarily Normal Spaces
We establish that if it is consistent that there is a supercompact cardinal, then it is consistent that every locally compact, hereditarily normal space which does not include a perfect pre-image of ω1 is hereditarily paracompact. This is the fifth in a series of papers ([LTo], [L2], [FTT], [LT], [T1] being the logically previous ones) that establish powerful topological consequences in models ...
متن کاملComputable Riesz Representation for Locally Compact Hausdorff Spaces
By the Riesz Representation Theorem for locally compact Hausdorff spaces, for every positive linear functional I on K(X) there is a measure μ such that I(f) = R f dμ, where K(X) is the set of continuous real functions with compact support on the locally compact Hausdorff space X. In this article we prove a uniformly computable version of this theorem for computably locally compact computable Ha...
متن کاملOn Modal Logics Arising from Scattered Locally Compact Hausdorff Spaces
For a topological space X, let L(X) be the modal logic of X where is interpreted as interior (and hence ♦ as closure) in X. It was shown in [6] that the modal logics S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), and their intersections arise as L(X) for some Stone space X. We give an example of a scattered Stone space whose logic is not such an intersection. This gives an affirmative answer ...
متن کاملModal compact Hausdorff spaces
We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries d...
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1970
ISSN: 0026-2285
DOI: 10.1307/mmj/1029000524